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Motivation

• Human action recognition is a challenging problem and has applications in a wide 
variety of areas like –

• Video based search and retrieval

• Intelligent surveillance systems 

• Automated driving

• Human Computer Interaction

• Robotics



Problem 
Definition

Given a video with a human as the 
subject of interest, identify the 
corresponding action.



Human body parts

• Human body can be articulated as a system of 
rigid and hinged joints. These joints can be 
combined to form the limbs and the trunk. 

• Human body can be decomposed into five 
parts – two arms, two legs and a trunk. The 
global action can be modeled as the collective 
action of these five parts.



Proposed 
Approach

• ℎ𝑖,𝑗
𝑡 = ℎ𝑖,𝑗

𝑡 ⊕ℎ𝑖,𝑗
𝑡

(the encoded part representation of part j at 𝑖𝑡ℎ layer for time t)

• 𝐼𝑖+1,𝑝
𝑡 = ℎ𝑖,𝑗

𝑡 ⊕ℎ𝑖,𝑘
𝑡

(the newly fused 𝑝𝑡ℎ representation for the fusion layer at time t)

• 𝑂 = 𝑣ℎ4,𝑏𝑜𝑑𝑦
𝑡 . ℎ4,𝑏𝑜𝑑𝑦

𝑇 + 𝑏ℎ4,𝑏𝑜𝑑𝑦
𝑡 (the output of the dense layer)

• 𝑐𝑘 =
𝑒𝑂𝑘

σ𝑗=1
𝐶 𝑒

𝑂𝑗
(the output class probabilities)



HAR Pipeline



Experimental Dataset

Weizmann dataset KTH dataset



Enhancements – Class Imbalance

Frame sampled from action class – running      Corresponding bounding box

• Issues:
• In KTH, for some actions, the subject performing the action only appears for short duration.
• Class imbalance data with actions like walking, jogging, running having relatively fewer frames.

• Solution:
• Frames not containing the human as the object of interest are discarded.
• Dataset is augmented by adding a moving window of size 10 to handle class imbalance.

• Gains:
• The accuracy of action recognition improved on an average by ~3 points.



Enhancements – Origin Shift of Coordinates

• Human actions are independent of their absolute spatial positions.

• The pose coordinates are shifted w.r.t the coordinates of neck and center of body. 

• The new origin is computed as: 

• 𝑂 =
𝑃ℎ𝑒𝑎𝑑+𝑃𝑙ℎ𝑖𝑝+𝑃𝑟ℎ𝑖𝑝

3

• The joint coordinates are shifted w.r.t to the new origin as

• 𝑃𝑁,𝑥
′ , 𝑃𝑁,𝑦

′ = 𝑃𝑁,𝑥 , 𝑃𝑁,𝑦 − 𝑂𝑥 , 𝑂𝑦

• The average recognition rates improved by an average of ~5 points.



Comparative Architectures

• 6 comparative architectures

• Architectures that operate directly on the trajectory of pose coordinates:

• Deep Bidirectional RNN (DBRNN).

• Deep Unidirectional LSTM (DULSTM).

• Deep Bidirectional LSTM (DBLSTM).

• Models with hierarchical connections:

• Point based Hierarchical BLSTM (PointHBLSTM).

• Part based Hierarchical BLSTM (PartHBLSTM)

• Proposed Approach



Recognition 
rates with 
different 
experiments



Conclusion

• We proposed a technique based on part based hierarchical fusion for action recognition.

• We designed a pipeline composed of several independently trained modules.

• Further, we propose and experiment with different enhancements like class imbalance, origin shift. 
These techniques can be applied universally to action recognition.

• Overall, we achieve 99.3% and 100% recognition rates on the KTH and Weizmann dataset, respectively. 

• Future Work: Extending this approach to more challenging dataset.



Thanks for watching
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